CHAIN RULE DIFFERENTIATION

If y is a function of u ie $y=f(u)$ and u is a function of x ie $u=g(x)$ then y is related to x through the intermediate function u ie $y=f(g(x))$
$\therefore \mathrm{y}$ is differentiable with respect to x
Furthermore, let $\mathrm{y}=\mathrm{f}(\mathrm{g}(\mathrm{x}))$ and $\mathrm{u}=\mathrm{g}(\mathrm{x})$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

There are a number of related results that also go under the name of "chain rules." For example, if $y=f(u) u=g(v)$, and $v=h(x)$,
then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d v} \cdot \frac{d v}{d x}
$$

Problem

Differentiate the following with respect to x

1. $\mathrm{y}=\left(3 \mathrm{x}^{2}+4\right)^{3}$
2. $y=e^{x^{-2}}$

Marginal Analysis

Let us assume that the total cost C is represented as a function total output q. (i.e) $\mathrm{C}=\mathrm{f}(\mathrm{q})$.

Then marginal cost is denoted by $\mathrm{MC}=\frac{d c}{d q}$
The average cost $=\frac{T C}{Q}$
Similarly if $U=u(x)$ is the utility function of the commodity x then
the marginal utility $\mathrm{MU}=\frac{d U}{d x}$
The total revenue function TR is the product of quantity demanded Q and the price P per unit of that commodity then $T R=Q . P=f(Q)$
Then the marginal revenue denoted by MR is given by $\frac{d R}{d Q}$
The average revenue $=\frac{T R}{Q}$

Problem

1. If the total cost function is $C=Q^{3}-3 Q^{2}+15 Q$. Find Marginal cost and average cost.

Solution:

$\mathrm{MC}=\frac{d c}{d q}$
$\mathrm{AC}=\frac{T C}{Q}$
2. The demand function for a commodity is $P=(a-b Q)$. Find marginal revenue.
(the demand function is generally known as Average revenue function). Total revenue $\mathrm{TR}=\mathrm{P} . \mathrm{Q}=\mathrm{Q} .(\mathrm{a}-\mathrm{bQ})$ and marginal revenue $\mathrm{MR}=\frac{d\left(a Q-b Q^{2}\right)}{d q}$

Growth rate and relative growth rate
The growth of the plant is usually measured in terms of dry mater production and as denoted by W. Growth is a function of time t and is denoted by $W=g(t)$ it is called a growth function. Here t is the independent variable and w is the dependent variable.
The derivative $\frac{d w}{d t}$ is the growth rate (or) the absolute growth rate $\mathrm{gr}=\frac{d w}{d t} . \mathrm{GR}=\frac{d w}{d t}$ The relative growth rate i.e defined as the absolute growth rate divided by the total dry matter production and is denoted by RGR.

$$
\text { i.e RGR }=\frac{1}{w} \cdot \frac{d w}{d t}=\frac{\text { absolutegrowthrate }}{\text { total drymatter production }}
$$

Problem

1. If $G=a t^{2}+b \sin t+5$ is the growth function function the growth rate and relative growth rate.
$\mathrm{GR}=\frac{d G}{d t}$
$\mathrm{RGR}=\frac{1}{G} \cdot \frac{d G}{d t}$

Implicit Functions

If the variables x and y are related with each other such that $f(x, y)=0$ then it is called Implicit function. A function is said to be explicit when one variable can be expressed completely in terms of the other variable.
For example, $y=x^{3}+2 x^{2}+3 x+1$ is an Explicit function

$$
x y^{2}+2 y+x=0 \text { is an implicit function }
$$

Problem

For example, the implicit equation $x y=1$ can be solved by differentiating implicitly gives

$$
\begin{aligned}
& \frac{d(x y)}{d x}=\frac{d(1)}{d x} \\
& x \frac{d y}{d x}+y=0 \\
& \frac{d y}{d x}=\cdots \frac{y}{x} .
\end{aligned}
$$

Implicit differentiation is especially useful when $y^{\prime}(x)$ is needed, but it is difficult or inconvenient to solve for y in terms of x.
Example: Differentiate the following function with respect to $x^{x^{3}} y^{6}+\mathrm{e}^{1-x}-\cos (5 y)=y^{2}$

Solution

So, just differentiate as normal and tack on an appropriate derivative at each step. Note as well that the first term will be a product rule.

$$
3 x^{2} x^{\prime} y^{6}+6 x^{3} y^{5} y^{\prime}-x^{\prime} \mathrm{e}^{1-x}+5 y^{\prime} \sin (5 y)=2 y y^{\prime}
$$

Example: Find y^{\prime} for the following function.

$$
x^{2}+y^{2}=9
$$

Solution

In this example we really are going to need to do implicit differentiation of x and write y as $y(x)$.

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}+[y(x)]^{2}\right)=\frac{d}{d x}(9) \\
& 2 x+2[y(x)]^{1} y^{\prime}(x)=0
\end{aligned}
$$

Notice that when we differentiated the y term we used the chain rule.
Example:
Find y^{\prime} for the following. $x^{3} y^{5}+3 x=8 y^{3}+1$

Solutio

First differentiate both sides with respect to x and notice that the first time on left side will be a product rule.

$$
3 x^{2} y^{5}+5 x^{3} y^{4} y^{t}+3=24 y^{2} y^{\prime}
$$

Remember that very time we differentiate a y we also multiply that term by $y^{\prime} y^{\prime}$ since we are just using the chain rule. Now solve for the derivative.

$$
\begin{aligned}
3 x^{2} y^{5}+3 & =24 y^{2} y^{\prime}-5 x^{3} y^{4} y^{\prime} \\
3 x^{2} y^{5}+3 & =\left(24 y^{2}-5 x^{3} y^{4}\right) y^{\prime} \\
y^{\prime} & =\frac{3 x^{2} y^{5}+3}{24 y^{2}-5 x^{3} y^{4}}
\end{aligned}
$$

The algebra in these can be quite messy so be careful with that.

Example

Find y^{\prime} for the following $x^{2} \tan (y)+y^{10} \sec (x)=2 x$
Here we've got two product rules to deal with this time.

$$
2 x \tan (y)+x^{2} \sec ^{2}(y) y^{t}+10 y^{9} y^{t} \sec (x)+y^{10} \sec (x) \tan (x)=2
$$

Notice the derivative tacked onto the secant. We differentiated a y to get to that point and so we needed to tack a derivative on.

Now, solve for the derivative.

$$
\begin{aligned}
\left(x^{2} \sec ^{2}(y)+10 y^{9} \sec (x)\right) y^{\prime} & =2-y^{10} \sec (x) \tan (x)-2 x \tan (y) \\
y^{\prime} & =\frac{2-y^{10} \sec (x) \tan (x)-2 x \tan (y)}{x^{2} \sec ^{2}(y)+10 y^{9} \sec (x)}
\end{aligned}
$$

Logarithmic Differentiation

For some problems, first by taking logarithms and then differentiating, it is easier to find $\frac{d y}{d x}$. Such process is called Logarithmic differentiation.
(i) If the function appears as a product of many simple functions then by taking logarithm so that the product is converted into a sum. It is now easier to differentiate them.
(ii) If the variable x occurs in the exponent then by taking logarithm it is reduced to a familiar form to differentiate.

Example Differentiate the function.

$$
y=\frac{x^{5}}{(1-10 x) \sqrt{x^{2}+2}}
$$

Solution Differentiating this function could be done with a product rule and a quotient rule. We can simplify things somewhat by taking logarithms of both sides.

$$
\ln y=\ln \left(\frac{x^{5}}{(1-10 x) \sqrt{x^{2}+2}}\right)
$$

$\ln y=\ln \left(x^{5}\right)-\ln \left((1-10 x) \sqrt{x^{2}+2}\right)$
$\ln y=\ln \left(x^{5}\right)-\ln (1-10 x)-\ln \left(\sqrt{x^{2}+2}\right)$
$\frac{y^{\prime}}{y}=\frac{5 x^{4}}{x^{5}}-\frac{-10}{1-10 x}-\frac{\frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2}}(2 x)}{\left(x^{2}+1\right)^{\frac{1}{2}}}$
$\frac{y^{t}}{y}=\frac{5}{x}+\frac{10}{1-10 x}-\frac{x}{x^{2}+1}$
Example Differentiate $\quad y=x^{n}$

Solution

First take the logarithm of both sides as we did in the first example and use the logarithm properties to simplify things a little.

$$
\begin{aligned}
& \ln y=\ln x^{x} \\
& \ln y=x \ln x
\end{aligned}
$$

Differentiate both sides using implicit differentiation.

$$
\frac{y^{\prime}}{y}=\ln x+x\left(\frac{1}{x}\right)=\ln x+1
$$

As with the first example multiply by y and substitute back in for y.

$$
\begin{aligned}
y^{\prime} & =y(1+\ln x) \\
& =x^{x}(1+\ln x)
\end{aligned}
$$

PAR AMETRIC FUNCTIONS

Sometimes variables x and y are expressed in terms of a third variable called parameter. We find $\frac{d y}{d x}$ without eliminating the third variable.

Let $x=f(t)$ and $y=g(t)$ then

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d t} \times \frac{d t}{d x} \\
& =\frac{d y}{d t} \times \frac{1}{\frac{d x}{d t}}=\frac{d y / d t}{d x / d t}
\end{aligned}
$$

Problem

1. Find for the parametric function $\mathrm{x}=\mathrm{a} \cos \theta, \mathrm{y}=\mathrm{b} \sin \theta$

Solution

$$
\begin{aligned}
& \frac{d x}{d \theta}=-\boldsymbol{a} \sin \theta \quad \frac{d y}{d \theta}=b \cos \theta \\
& \begin{aligned}
\frac{d y}{d x} & =\frac{d y / d \theta}{d x / d \theta} \\
& =\frac{b \cos \theta}{-a \sin \theta} \\
& =-\frac{b}{a} \cot \theta
\end{aligned}
\end{aligned}
$$

Inference of the differentiation

Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be a given function then the first order derivative is $\frac{d y}{d x}$.
The geometrical meaning of the first order derivative is that it represents the slope of the curve $y=f(x)$ at x.
The physical meaning of the first order derivative is that it represents the rate of change of y with respect to x.

PROBLEMS ON HIGHER ORDER DIFFERENTIATION

The rate of change of y with respect x is denoted by $\frac{d y}{d x}$ and called as the first order derivative of function y with respect to x .

The first order derivative of y with respect to x is again a function of x, which again be differentiated with respect to x and it is called second order derivative of $y=f(x)$ and is denoted by $\frac{d^{2} y}{d x^{2}}$ which is equal to $\frac{d}{d x}\left(\frac{d y}{d x}\right)$
In the similar way higher order differentiation can be defined. le. The nth order derivative of $y=f(x)$ can be obtained by differentiating $n-1^{\text {th }}$ derivative of $y=f(x)$

$$
\frac{d^{n} y}{d x^{n}}=\frac{d}{d x}\left(\frac{d^{n-1} y}{d x^{n-1}}\right) \text { where } \mathrm{n}=2,3,4,5 \ldots
$$

Problem

Find the first, second and third derivative of

1. $\mathrm{y}=e^{a x+b}$
2. $y=\log (a-b x)$
3. $y=\sin (a x+b)$

Partial Differentiation

So far we considered the function of a single variable $y=f(x)$ where x is the only independent variable. When the number of independent variable exceeds one then we call it as the function of several variables.

Example

$z=f(x, y)$ is the function of two variables x and y, where x and y are independent variables.
$\mathrm{U}=\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is the function of three variables x, y and z , where x, y and z are independent variables.

In all these functions there will be only one dependent variable.
Consider a function $z=f(x, y)$. The partial derivative of z with respect to x denoted by $\frac{\partial z}{\partial x}$ and is obtained by differentiating z with respect to x keeping y as a constant.

Similarly the partial derivative of z with respect to y denoted by $\frac{\partial z}{\partial y}$ and is obtained by differentiating z with respect to y keeping x as a constant.

Problem

1. Differentiate $U=\log (a x+b y+c z)$ partially with respect to $x, y \& z$

We can also find higher order partial derivatives for the function $z=f(x, y)$ as follows
(i) The second order partial derivative of z with respect to x denoted as $\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial^{2} z}{\partial x^{2}}$ is obtained by partially differentiating $\frac{\partial z}{\partial x}$ with respect to x. this is also known as direct second order partial derivative of z with respect to x.
(ii)The second order partial derivative of z with respect to y denoted as $\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial^{2} z}{\partial y^{2}}$ is obtained by partially differentiating $\frac{\partial z}{\partial y}$ with respect to y this is also known as direct second order partial derivative of z with respect to y
(iii) The second order partial derivative of z with respect to x and then y denoted as $\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial^{2} z}{\partial y \partial x}$ is obtained by partially differentiating $\frac{\partial z}{\partial x}$ with respect to y. this is also known as mixed second order partial derivative of z with respect to x and then y
iv) The second order partial derivative of z with respect to y and then x denoted as $\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial^{2} z}{\partial x \partial y}$ is obtained by partially differentiating $\frac{\partial z}{\partial y}$ with respect to x . this is also known as mixed second order partial derivative of z with respect to y and then x. In similar way higher order partial derivatives can be found.

Problem

Find all possible first and second order partial derivatives of

1) $z=\sin (a x+b y)$
2) $u=x y+y z+z x$

Homogeneous Function

A function in which each term has the same degree is called a homogeneous function.

Example

1) $x^{2}-2 x y+y^{2}=0 \rightarrow$ homogeneous function of degree 2 .
2) $3 x+4 y=0 \quad \rightarrow$ homogeneous function of degree 1 .
3) $x^{3}+3 x^{2} y+x y^{2}-y^{3}=0 \rightarrow$ homogeneous function of degree 3 .

To find the degree of a homogeneous function we proceed as follows.
Consider the function $f(x, y)$ replace x by $t x$ and y by ty if $f(t x, t y)=t^{n} f(x, y)$ then n gives the degree of the homogeneous function. This result can be extended to any number of variables.

Problem

Find the degree of the homogeneous function

$$
\text { 1. } f(x, y)=x^{2}-2 x y+y^{2}
$$

2. $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{x-y}{x+y}$

Euler's theorem on homogeneous function

If $U=f(x, y, z)$ is a homogeneous function of degree n in the variables $x, y \& z$ then
$x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=n \cdot u$

Problem

Verify Euler's theorem for the following function

1. $u(x, y)=x^{2}-2 x y+y^{2}$
2. $u(x, y)=x^{3}+y^{3}+z^{3}-3 x y z$

INCREASING AND DECREASING FUNCTION

Increasing function

A function $y=f(x)$ is said to be an increasing function if $f\left(x_{1}\right)<f\left(x_{2}\right)$ for all $x_{1}<x_{2}$.

The condition for the function to be increasing is that its first order derivative is always greater than zero .
i.e $\frac{d y}{d x}>0$

Decreasing function

A function $y=f(x)$ is said to be a decreasing function if $f\left(x_{1}\right)>f\left(x_{2}\right)$ for all $x_{1}<x_{2}$.

The condition for the function to be decreasing is that its first order derivative is always less than zero.

$$
\text { i.e } \quad \frac{d y}{d x}<0
$$

Problems

1. Show that the function $y=x^{3}+x$ is increasing for all x.
2. Find for what values of x is the function $y=8+2 x-x^{2}$ is increasing or decreasing?

Maxima and Minima Function of a single variable

A function $y=f(x)$ is said to have maximum at $x=a$ if $f(a)>f(x)$ in the neighborhood of the point $x=a$ and $f(a)$ is the maximum value of $f(x)$. The point $x=a$ is also known as local maximum point.

A function $y=f(x)$ is said to have minimum at $x=a$ if $f(a)<f(x)$ in the neighborhood of the point $x=a$ and $f(a)$ is the minimum value of $f(x)$. The point $x=a$ is also known as local minimum point.

The points at which the function attains maximum or minimum are called the turning points or stationary points

A function $y=f(x)$ can have more than one maximum or minimum point.
Maximum of all the maximum points is called Global maximum and minimum of all the minimum points is called Global minimum.
A point at which neither maximum nor minimum is called Saddle point.
[Consider a function $y=f(x)$. If the function increases upto a particular point $x=a$ and then decreases it is said to have a maximum at $x=a$. If the function decreases upto a point $\mathrm{x}=\mathrm{b}$ and then increases it is said to have a minimum at a point $\mathrm{x}=\mathrm{b}$.]

The necessary and the sufficient condition for the function $y=f(x)$ to have a maximum or minimum can be tabulated as follows

	Maximum	Minimum
First order or necessary condition	$\frac{d y}{d x}=0$	$\frac{d y}{d x}=0$
Second order or sufficient condition	$\frac{d^{2} y}{d x^{2}}<0$	$\frac{d^{2} y}{d x^{2}}>0$

Working Procedure

1. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$
2. Equate $\frac{d y}{d x}=0$ and solve for x . this will give the turning points of the function.
3. Consider a turning point $\mathrm{x}=\mathrm{a}$ then substitute this value of x in $\frac{d^{2} y}{d x^{2}}$ and find the nature of the second derivative. If $\left(\frac{d^{2} y}{d x^{2}}\right)_{a t x=a}<0$, then the function has a maximum value at the point $\mathrm{x}=\mathrm{a}$. If $\left(\frac{d^{2} y}{d x^{2}}\right)_{a t x=a}>0$, then the function has a minimum value at the point $\mathrm{x}=\mathrm{a}$.
4. Then substitute $x=a$ in the function $y=f(x)$ that will give the maximum or minimum value of the function at $x=a$.

Problem

Find the maximum and minimum values of the following function

1. $\mathrm{y}=\mathrm{x}^{3}-3 \mathrm{x}+1$
